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1 Introduction

Moessfit is a fitting programm written for complex fitting tasks including

• global fit parameters

• maximum entropy distributions

• user defined parameter distributions
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• usage run specific parameter function as temperature dependent magnetic order parameter or Debye models
for Isomer shift and spectral area (Debye-Waller factor)

To run the program you have to run the MoessFit.exe. The program needs access to the following dll located in
the same folder like the executable:

• Windows XP: libgcc s dw2-1.dll, mingwm10.dll , QtCored4.dll and QtGuid4.dll, libgsl-0.dll, libgslcblas-0.dll.

• Windows7/8: Qt5Widgets.dll, icudt51.dll, icuin51.dll, icuuc51.dll, libEGL.dll, libGLESv2.dll, Qt5Core.dll,
Qt5Gui.dll

The aim of Moessfit is the simultaneous fitting of multiple Mössbauer spectra (runs) with a common model
(theory). For this purpose a data input from a mbs-textfile similar to musrfit[SW12] is used. By default the
program is set up for 57Fe Mössbauer spectroscopy, but may be used for any I = 1/2 ↔ I = 3/2 transition using
Nucleus COMMAND (sec. 6). In sec. 8 it is explained how to use Moessfit to fit any analytical function to an
arbitrary set of data.

1.1 Structure of a fit project and mbs-file

A typical Moessfit fitting project consists of a project folder consisting of subfolders which contain folded Mössbauer
spectra (*.fld). Please note that only the newest fld-files of each subfolder may be considered by Moessfit (sec. 4).
The project folder contains the Moessfit input file (*.mbs), which is a textfile with the following blocks: FITPARAM-
ETER, THEORY, RUN, FUNCTIONS, COMMANDS, PLOT, FITDATA, MEMDATA and FITSTATISTICS. The
first three are necessary for a valid Moessfit input. The blocks are explained in the sections below. A block starts
by its identifier e.g. ”THEORY” and ends at ”##”. Although the user can edit parameters via the main panel it
is strongly recommended to get used to an advanced text editor (Notepad++, Medit etc.) to modify the mbs-file
directly and reload it subsequently. Are working example is shown in sec. 3.3.

1.2 Operation

To perform a fit set up the *.mbs, select it under ”File→open file” or use command line arguments passing. Moessfit
supports all file types which can be opened by ”File→open” as command line arguments, e.g.

• *.mbs: Moessfit fit model

• *.fld: loads processed data (velocity-count) and generates a mbs-file in the same folder to treat the data with
an static Hamiltonian approach. Multiple fld-files can be opened to be handed to an single mbs-file.

• *.dat/*.ws5: raw data can be folded with Moessfit using a cos-velocity function, a fld-file will be generated in
the same folder. Moessfit recommends a ”probable fold channel” based on a auto correlation. If the user uses
a float fold channel, only the velocities will be calculated, the number of data channels stays constant.

Keep in mind the following keys to operate Moessfit:

• ”f” ... fit data

• ”v” ... view data

• ”e” ... error calculation. Has to be done manually as it can be more time consuming than the fit itself.
Moessfit estimates 68.3 % (1σ) confidence intervals. Have a look on Errors-command for non-covariant error
calculation.

• ”u”/”r”/F5 ... reload/update model from mbs-file

1.3 Keep in mind the following hints

• Report Debugs and personal wishes concerning MoessFit directly to sirko.kammusella@tu-dresden.de

• Moessfit automatically generates a default mbs-file, if a fld-file is loaded. To tell the truth: Moessfit will
actually load this mbs-file (including a default model), generated from the selected fld-file. For future work
just rename that file.
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• Use the I0-COMMANDS to auto-initialize the baseline and calculate the spectral face by an absorption
coefficient. Alternatively auto-initialize the spectral area using the A-COMMANDS.

• Delete all the appended FITDATA section in your mbs-file and reload, if you want to start new.

• If a fit model successfully loads but does show no or wrong plots, verify the fld specified in the RUN block.
At least one of them might contain weird data.

• to temporary disable lines within a block, type a single ”#” at the beginning of the concerning line. ”##”
will end the block at this position.

• Moessfit supports multithreading, so take advantage of a multi core CPU if available to improve performance
by the count of cores.

• Restrict the range of a fit parameter p to [a, b] by introducing the function a+ (b− a) · e−p2

• Use the links in the plots and the mouse wheel to navigate through the data.

• ”-1” error values indicate, that either the fitting minimum is yet not reached or that parameters are highly
correlated.

• Extract spectra by plotting them and then using Menu Plot−→ ...to clipboard

• A variable global parameter instantly leads to a global fit, which means: (a) the Nelder-Mead-simplex algo-
rithm is replaced by a primitive steepest gradient algorithm (to keep simplex use ForceSimplex-COMMANDS)
(b) multithreading can not be applied as efficient as in a serial fit.

• Respect the feasibility of error calculations: Consider a global fit of a 7 Parameter model (3 global) for 20
runs. This leads to a Hessian matrix with 389 different non-zero matrix entries. Every entry referring a
global parameter effects the recalculation of 20 Mössbauer spectra. Even if there is only one such calculation
necessary to determine a second derivative, altogether at least 5240 Mössbauer spectra have to be calculated.
If these Mössbauer spectra contain a MEM, the error calculation can easily exceed 1 hour of calculation time.
Consider the alternative Error calculation modes which be used by Errors-COMMANDS

• MoessFit takes fld-, mbs-, dat- and ws5-files as command line arguments, so auto-link them to the exe.

• Have a look on the example folder representing typical subjects of MoessFit.

• Change single fitting parameter values in the appended fitting section and reload to influence the data directly.
More easily take advantage of the main panel.

• Mössbauer deals rather with physical numbers than ”mm/s”, this concerns especially the field gradient and
magnetic hyperfine field. For conversation you should use the following values being applied in Moessfit:

– ceQ
2Eγ

= 0.0167mm/s
V/Å2

in the quadrupolar interaction ∆vQS = ceQ
2Eγ
· Vzz

√
1 + η2

3 . This corresponds to an

quadrupolar moment of 160 mb [Pyy08, DBS95].

– g1/2 = 0.18088, g3/2 = −0.10327 [Bha98] and cµn
Eγ

= 0.65572mm/sT for the Zeeman splitting ∆vzeeman =

gI
cµn
Eγ

B

• If the number of MEM-Iteration meats the specified maximum, you have to increase the maximum or increase
the smoothness of the distribution by reducing λ′ (see COMMANDS-MEM)

2 FITPARAMETER

The FITPARAMETER block lists all parameters used in THEORY block and describes and classifies them into run
specific fitting, global fitting and constant. Only fitting parameters will be effected by the fitting routine. Each line
stand for a fit parameter and consists of name, initial value and step size. A step size of zero marks a parameter to
be a constant. If a name begins with ”global ”, then this fit parameter will be treated as global, else as run specific.
A typical FITPARAMETER block is shown in the next section.

Keep in mind that the decimal place of step size is related to the decimal place of the fitdata and its calculated
errors in the FITDATA output.
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3 THEORY

The THEORY block sums up several spectra construction commands which are separated by line breaks. These
predefined constructors consist of an identifier and a parameter list. So far, the following predefined constructors
exist.

3.1 Constructors

• BL 1
Baseline, sets a constant channel content for all channels
1: I0 [], channel content, counts

(a) Orientation of the nucleus in a predominant electric field
gradient and a small magnetic field B.

(b) Angles of absorption and magnetic field in the electric field
gradient coordinate system.

Figure 1: Electric/Magnetic environment and photon polarisation and its conventional description using the angles
Θ,Φ, β, γ, α, ξ

• SHp 1 2 3 4 5 6 7 8
Static Hamiltonian, powder. Directions are described in the electric field gradient coordinate system (fig. 1):

Vzz = (0, 0, 1), Vyy = (0, 1, 0), Vxx = (1, 0, 0), ~B = (sin Θ cos Φ, sin Θ sin Φ, cos Θ)
1: B [T], magnetic hyperfine field
2: Vzz [V/Å2], principal component of field gradient
3: η, asymmetry parameter
4: Θ [◦], polar angle (B, Vzz)
5: Φ [◦], azimuthal angle (B, Vzz)
6: CS [mm/s], center shift
7: ω [mm/s], line width
8: A [mm/s], spectral Area

• SHpLev 1 2 3 4 5 6 7 8 9
similar to SHp, but estimating the saturation effect for thick absorber with an effective thickness ta. The line
intensity of the ith line is estimated by[CY07, 71,377]

I(ta,i = ta ∗ fi) = ta,i · e−ta,i/2 · (I0(ta,i/2) + I1(ta,i/2)) (1)

with the thin absorber line intensity fi (
∑
i fi = 1). This approximation is valid for well separated lines

and intended to treat thick absorber spectra with maximum entropy method. For a proper thick absorber

4



analysis use the TransmissionIntegral COMMAND instead. In this spectrum constructor ta only describes
the levelling, and not the line broadening and not the total absorption area, with is given by A instead. 1: B
[T], magnetic hyperfine field
2: Vzz [V/Å2], principal component of field gradient
3: η, asymmetry parameter
4: Θ [◦], polar angle (B, Vzz)
5: Φ [◦], azimuthal angle (B, Vzz)
6: CS [mm/s], center shift
7: ω [mm/s], line width
8: A [mm/s], spectral Area
9: ta, effective thickness of the absorber

• SHc 1 2 3 4 5 6 7 8 9 10
Static Hamiltonian, crystal. Directions are described in the electric field gradient coordinate system (fig. 1):

Vzz = (0, 0, 1), Vyy = (0, 1, 0), Vxx = (1, 0, 0), ~B = (sin Θ cos Φ, sin Θ sin Φ, cos Θ), ~G = (sinβ cos γ, sinβ sin γ, cosβ)
1: B [T], magnetic hyperfine field
2: Vzz [V/Å2], principal component of field gradient
3: η, asymmetry parameter
4: Θ [◦], polar angle (B, Vzz)
5: Φ [◦], azimuthal angle (B, Vzz)
6: CS [mm/s], center shift
7: ω [mm/s], line width
8: A [mm/s], spectral Area
9: β [◦], polar texture angle
10: γ [◦], azimuthal texture angle

• SHcG 1 2 3 4 5 6 7 8 9 10

Figure 2: Photon coordinate system assumed in the SHcG construction command.

Directions are described in the photon’s coordinate system (fig. 2): ~G = (0, 0, 1), Vzz = (sinβ, 0, cosβ),
~B = (sin Θ′ cos Φ′, sin Θ′ sin Φ′, cos Θ′) The Vxx-axis is obtained by rotating the axis (sin(β−π), 0, cos(β−π))
by an angle of −γ around the Vzz-axis.

• SHcB 1 2 3 4 5 6 7 8 9 10
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Figure 3: Magnetic field coordinate system assumed in the SHcB construction command.

Directions are described in the magnetic field coordinate system (fig. 3): ~B = (0, 0, 1), Vzz = (sin Θ, 0, cos θ),
~G = (sinβ′ cos γ′, sinβ′ sin γ′, cosβ′) The Vxx-axis is obtained by rotating the axis (sin(Θ− π), 0, cos(Θ− π))
by an angle of −Φ around the Vzz-axis.

• Dyn 1 2 3
11 12 13 14 15 16 1W2 ... 1WJ
21 22 23 24 25 26 2W1 ... 2WJ
...
Blume dynamic line shape model [Blu68], defines J states each with (J − 1) fluctuation rates from one state
to the others. We stress that Moessfit at the moment only uses the naive implementation for powder spectra
inverting a 8Jx8J matrix for every velocity. According to Clausser [Cla71] this can be avoided by solving a
general complex diagonalization, saving two orders of magnitude computation time [SD76]. At the moment,
this kind of calculation is not available in Moessfit. However, analytical inversions are possible for two or
three diagonal states, they are applicable as DynDiagDiag and DynDiagDiagDiag.
1: J , number of states
2: ω [mm/s], global line width for all states
3: A [mm/s], spectral area
i1: B [T], state i, magnetic hyperfine field
i2: Vzz [V/Å2], state i, principal component of field gradient
i3: η, state i, asymmetry parameter
i4: Θ [◦], state i, polar angle (B, Vzz)
i5: Φ [◦], state i, azimuthal angle (B, Vzz)
i6: CS [mm/s], state i, center shift
iWj: Wij [MHz], fluctuation rate from state i to state j, provide (J − 1) Fluctuation rates for every state
The following example demonstrates the syntax for a fluctuation between two field gradients and an magnetic
hyperfine field:
##########
THEORY
BL I0
Dyn J omega A
Bhyp 0 0 0 0 CS1 W12 W13
0 Vzz1 0 0 0 CS1 W21 W23
0 Vzz2 0 0 0 CS1 W31 W32
##########
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• DynDiagDiag 1 2 3 4 5 6 7 8 9 10 11
Blume dynamic line shape model [Blu68] for two states, in each case with diagonal Hamiltonian. Compared
to the ”Dyn” command DynDiagDiag is mush faster.
1: B1 [T], state 1, magnetic hyperfine field
2: B2 [T], state 2, magnetic hyperfine field
3: Vzz1 [V/Å2], state 1, principal component of field gradient
4: Vzz2 [V/Å2], state 2, principal component of field gradient
5: CS1 [mm/s], state 1, center shift
6: CS2 [mm/s], state 2, center shift
7: ω [mm/s], line width
8: A [mm/s], spectral Area
9: β [◦], angle between quantization axis and gamma beam, type magic angle (54.7◦) for powder
10: W12 [MHz], fluctuation rate from state 1 to state 2
11: W21 [MHz], fluctuation rate from state 2 to state 1
The following example demonstrates a flipping magnetic dipole with the principal axis of the field gradient
parallel to the magnetic moment:
##########
THEORY
BL I0
DynDiagDiag Bplus Bminus Vzz Vzz CS CS omega A0 54.7 W W
##########

• DynDiagDiagDiag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
similiar to DynDiagDiag, but with three states
1-3: B [T], state 1-3, magnetic hyperfine field
4-6: Vzz [V/Å2], state 1-3, principal component of field gradient
7-9: CS [mm/s], state 1-3, center shift
10: ω [mm/s], line width
11: A [mm/s], spectral Area
12: β [◦], angle between quantization axis and gamma beam, type magic angle (54.7◦) for powder
13-18: W12,W13,W21,W23,W31,W32 [MHz], fluctuation rates

• MLR 1 2 3 4 5 6 7 8 9
Multi Level Relaxation model as described in [Chu11] without presence of electric field gradient, describes
2S+ 1 spin states in a parabolic potential, identified by the spin orientation mi and energy Ei = −KVm2

i /S
2

1: B [T], magnetic hyperfine field, canted field is calculated by Bi = Bmi/S
2: Vzz [V/Å2], principal component of field gradient parallel to the field
3: CS [mm/s], center shift
4: ω [mm/s], line width
5: A [mm/s], spectral Area
6: β [◦], angle between quantization axis and gamma beam, type magic angle (54.7◦) for powder, phenomeno-
logical only in this model
7: KV/kBT , ratio between energy barrier KV and thermal energy kBT
8: D [MHz], Diffusion constant, fluctuation rates are proportional calculated by Wij = (δi+1,j + δi−1,j) ·

D(S(S + 1)−mimj) ·min(1, e
−
Ej−Ei
kBT )

9: S, total moment quantum number, choose S > 30 for a realistic spectrum

• mSSH 1 2 3 4 5 6 7 8 9 10 11 12 13 14
magnetized source and Static Hamiltonian sample
1: Bspl [T], magnetic hyperfine field in sample
2: Vzz [V/Å2], principal component of field gradient
3: η, asymmetry parameter
4: Θ [◦], polar angle (B, Vzz)
5: Φ [◦], azimuthal angle (B, Vzz)
6: CS [mm/s], center shift
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7: ω [mm/s], line width
8: A [mm/s], spectral Area
9: β [◦], polar texture angle
10: γ [◦], azimuthal texture angle
11: Bsrc [T], magnetic hyperfine field of source
12: βsrc [◦], polar orientation of source magnetization with respect to the gamma beam, 0◦...longitudinal
polarization, 90◦ transverse polarization
13: α [◦], azimuthal tilting (around gamma beam) of the magnetization with respect to principal axis of the
sample system
14: ε ∈ [0, 1], polarisation, for an source in field typically =1

• afmBex 1 2 3 4 5 6 7 8 9 10 11
antiferromagnet (uniaxial) in external fields, transverse geometry, powder
1: Bafm [T], internal field of the moments
2: BA [T], anisotropy field
3: BJ [T], exchange field
4: Bex [T], exchange field
5: Vzz [V/Å2], principal component of field gradient
6: Θ [◦], polar (Bafm, Vzz)
7: CS [mm/s], center shift
8: ω [mm/s], line width
9: A [mm/s], spectral Area
10: N , direction number to simulate powder
11: NVzz , Vzz sample number, rotated around easy axis

• afmBexLong 1 2 3 4 5 6 7 8 9 10 11
same as afmBex, but in longitudinal field mode

• fmBex 1 2 3 4 5 6 7 8 9 10
ferromagnet (uniaxial) in external fields, transverse geometry, powder
1: Bafm [T], internal field of the moments
2: BA [T], anisotropy field
3: Bex [T], exchange field
4: Vzz [V/Å2], principal component of field gradient
5: Θ [◦], polar (Bafm, Vzz)
6: CS [mm/s], center shift
7: ω [mm/s], line width
8: A [mm/s], spectral Area
9: N , direction number to simulate powder
10: NVzz , Vzz sample number, rotated around easy axis

• FeCal 1 2 3 4 5 6 7 8
iron foil calibration, assuming harmonic drive input, subfolder names should represent monitor voltage in mV
1: ω1 [mm/s], outer line width
2: ω2 [mm/s], mid line width
3: ω3 [mm/s], inner line width
4: A [mm/s], outer peak Area
5: A [mm/s], mid peak Area
6: A [mm/s], inner peak Area
7: α [(mm/s)/mV], calibration factor of monitor signal
8: CS [mm/s], center shift

• FeCaltriang 1 2 3 4 5 6 7 8
iron foil calibration, assuming triangular drive input, rsp should represent monitor voltage in mV
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1: ω1 [mm/s], outer line width
2: ω2 [mm/s], mid line width
3: ω3 [mm/s], inner line width
4: A [mm/s], outer peak Area
5: A [mm/s], mid peak Area
6: A [mm/s], inner peak Area
7: α [(mm/s)/mV], calibration factor of monitor signal
8: CS [mm/s], center shift
5: ∆v12 [mm/s], line position output

• PseudoVoigt 1 2 3 4

Pseudo-Voigt profile, I(v) = η · 1
πω

1

1+( v−CSw )
2 + (1− η) ·

√
ln 2√
πω
e− ln 2( v−CSω )

2

1: CS [mm/s], center shift
2: ω [mm/s], line width
3: η, Lorentzian weight
4: A [mm/s], spectral Area

• FeAs 1 2 3 4 5
FeAs powder spectra, simulated from five SHp-constructors with the parameters (Bi(T ), Vzz(T ), 1, θi, 53,
CS(T ), 0.13, Ai), where Bi(T ) = Bi · (1− (T/69 K)2.25)0.21, Vzz(T ) = −(28.96 + (300− T ) ∗ 0.0183685614),
CS(T ) = CS0 + QuadDop(T,ΘD, 57), Ai = A0 · fi · AbsDeb(T,ΘD, 57) and (Bi, θi, fi): (4.16,9,0.21),
(0.88,27,0.27), (3.61,45,0.19), (2.52,63,0.17), (1.75,81,0.16). Such model was introduced by Häggström et
al. [HGSF89].
1: T [K], temperature, typically this parameter is ”rsp”
2: CS0 [K], 0 K center shift, isomer shift with respect to room temperature α−Fe should be close to 0.6 mm/s
at 0 K
3: A0 [mm/s], 0 K spectral area
4: ΘD [K], Debye Temperature, used to calculated quadratic Doppler effect end Debye-Waller factor, should
be close to 390 K
5: TN,FeAs [K], Neél temperature of FeAs, should be close to 69 K

3.2 Arguments

Every parameter is of one of the following types:

• # ... inserts the pure object value

• DISTR[#,#,#,#,#] ... DISTR[storage,min,max,steps,weightfunction] stores all values between min and max
one after the other into storage and sets them for the parameter simultaneously, weights the resulting spectra
with the weight function. This can be folded with DISTR of other arguments.

• DISTR[#,#,#,#,#,#] ... DISTR[storage,min,max,steps,weightfunction,parameterfunction] works the same
as DISTR, but additionally calculates the parameter value by parameter function instead of inheriting directly
from storage. The storage variable in that case acts as a parametrisation. The following two lines describe
equivalent models:

SHp DISTR[theta,0,90,31,rho,B] Vzz 0 theta 0 CS omega A0

SHp B Vzz 0 DISTR[theta,0,90,31,rho] 0 CS omega A0

• MEM[#,#,#,#] ... MEM[storage,min,max,steps] arranges Maximum Entropy Method for this parameter
[SB84]. For construction of MEM-subspectra the MEM-parameter is temporary stored in storage. This MEM
can be combined MEM of other arguments. Pay Attention to MEM-command.

• MEM[#,#,#,#,#] ... MEM[storage,min,max,steps,parameterfunction] works the same as MEM[#,#,#,#],
but MEM is executed on the storage parameter, whereas the actual argument is calculated with the parameter
function. Thus storage may serve as a parametrization of the argument. The following two lines describe
equivalent models:
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SHp MEM[theta,0,90,31,B] Vzz 0 theta 0 CS omega A0

SHp B Vzz 0 MEM[theta,0,90,31] 0 CS omega A0

• HR[#,#,#,#] ... HR[storage,min,max,steps] applies a Hesse-Rübartsch distribution [HR74] on this parameter.
The numeric approximation of the second derivative is calculated from five points as proposed by Le Cear
and Dubois [LCD79]. For construction of HR-subspectra the HR-parameter is temporary stored in storage.
Pay Attention to HR-command. The distribution can be constrained to positive values using with the HR-
command.

• HR[#,#,#,#,#] ... MEM[storage,min,max,steps,parameterfunction] works the same as HR[#,#,#,#], but
HR is executed on the storage parameter, whereas the actual argument is calculated with the parameter
function. Thus storage may serve as a parametrization of the argument.

In this notation # stands for one of the following objects:

• a fitparameter name defined in FITPARAMETER block

• a function name defined in FUNCTIONS block

• map, i.g. you state ”map0” or ”map1” or ... to access the first or second or ... run specific map defined in
RUN Block

• a constant number

Function objects are updated just before calculation, after all parameters are deployed.

3.3 Minimum example

A simple iron sextet could be described the following way

###############################################################

FITPARAMETER

Bhyp 33.0 0

omega 0.12 0.01

CS 0.2 0.1

I0 10000 100

A 2000 100

###############################################################

THEORY

BL I0

SHp Bhyp 0 0 0 0 CS omega A

###############################################################

RUN

"C:/path/to/data.fld" 1

###############################################################

4 RUN

The lists data to be taken into account for the fitting and should contain at least all runs stated in the PLOT block.
Every line of the RUN block consists at least of a float, representing the run specific parameter ”rsp” (usually
temperature, but also field/voltage might be used instead). If only the rsp is stated, than Moessfit will search
for a subfolder named like rsp to load the newest *.fld filed contained in. Alternatively the full path or the path
relative to the mbs-file can be given in quotation marks, before stating any rsp value. Optionally the rsp is followed
by the space separated declaration of x-intervals the fit is restricted to. These intervals are stated in the form
”[x0min,x0max] [x1min,x1max] ... [xnmin,xnmax]”. Run specific maps – if there are some – follow space separated
(type the name of the referring fit parameter/function/map or a number). Keep in mind that all runs have to state
the same number of maps. The following example shows a RUN block which reads essentially the same data file
but with different rsp value, fit range restrictions and/or maps.
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###############################################################

RUN

"C:/absolute/path/to/mbs_file_folder/4/newest.fld" 1 fun7 fun2

"../mbs_file_folder/4/newest.fld" 2 fun7 fun2

"4/newest.fld" 3 fun7 fun2

4 fun7 fun2

"4/newest.fld" 5 [-5,-3] [2,3] fun7 fun2

"4/newest.fld" 6 [-5,-3] par4 0

"4/newest.fld" 7 par4 par4

"4/newest.fld" 8 par4 map0

###############################################################

The first four runs are identical except for the rsp. Run 5 and run 6 have restricted fit ranges. Run 6, 7, and 8 have
different maps compared to the previous runs. fun2, fun7, and par4 have to be declared in the FITPARAMETER
or the FUNCTIONS block. Run7 and 8 are identical again – except for the rsp – and demonstrate the use of a
map. ”map0” refers to the first stated map of this run, which is ”par4”.

5 FUNCTIONS

The FUNCTIONS block has to list all user defined functions being used in the THEORY block. The block is of
the following form:

###############################################################

FUNCTIONS

functionname1 = ...

functionname2 = ...

###############################################################

Define a function on the ”...”-position. The function parser is taken from http://warp.povusers.org/FunctionParser/,
so please refer to the page concerning syntax questions. A function can contain objects of every kind (fit param-
eters, other function from FUNCTIONS block, map parameters (”map#”)) and the run specific parameter (i.g.
temperature/field/voltage) (”rsp”), which is stated within the RUN block.

The following functions are implemented additionally (simply type the left hand name and the arguments as
stated above):

1. AbsDeb(T,ΘD,Meff ) = e
−

h̄2k2
γ

2Meff

1
kBΘD

(
3
2 +6

(
T

ΘD

)2 ∫ΘD/T

0
xdx
ex−1

)
... Debye Waller factor of the phonon Debye

model, [T,ΘD,M ]=K,K,u; for 57Fe nucleus by default, to change kγ use ”Nucleus” command

2. FerroMag(B,Ms, J, T, Tc, g) ... magnetisation of a ferromagnet, described in mean field theory by Weiss,
[B,Ms, J, T, Tc, g] = T,A/m,−,K,K,−, with the applied field B, the saturation Magnetisation Ms, the total
spin J , the temperature T and transition temperature Tc and the gyromagnetic factor.

3. QuadDop(T,ΘD,Meff ) = − 9R
2NAMeff c

T 4

Θ3
D

∫ ΘD/T

0
x3dx
ex−1 ... quadratic Doppler effect in Debye approximation of

heat capacity; [T,ΘD,M]=K,K,u

4. SwaveSFD(T, Tc, λ
−2
0 ,∆0) = λ−2

0

1 +
∫∞

∆
− eE/kbT

kbT (eE/kbT + 1)︸ ︷︷ ︸
∂f
∂E

· E√
E2−∆2

 ... super fluid density in the s-wave

model for µSR fitting purpose with ∆ = ∆0 · tanh(1.82 · (1.018 · (TcT − 1)0.51)); [T, Tc, λ
−2
0 ,∆0]=K,K,µm−2,eV

5. erf(x) = 2√
π

∫ x
0
e−t

2

dt ... Gaussian error function

6. Hc2WHH(T, TC , dHc2/dt |t=1 , α, λSO) ... Temperature dependence of the 2nd critical field of a superconduc-
tor within the WHH model [Col86]. [T, TC , dHc2/dT |t=1 , α, λSO)]=K,K,G,1. The model has the following
restrictions
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• transition is of 2nd order

• spin orbit scattering frequency λSO is much less than normal scattering frequency

• strong coupling is neglected

• Fermi surface anisotropy is neglected

• there is normal state spin (Pauli) paramagnetism

• there is mixed state spin orbit scattering

α... Maki paraeter (2)

λSO =
2h̄

3πkBTCτSO
... Spin orbit scattering frequency (3)

t =
T

TC
(4)

h̄ =
4

π2
· h∗ (5)

h∗ =
HC2

−(HC2/dt)t=1
(6)

ln

(
1

t

)
=

n=+∞∑
n=−∞

 1

|2n+ 1|
− 1

|2n+ 1|+ h̄/t+ (αh̄/t)2

|2n+1|+(h̄+λSO)/t

 ...implicit WHH − equation (7)

7. NGLsigmaquad(Bex, BC2, λ) ... Numeric Ginzburg-Landau theory [Bra03] to describe the superconducting
damping rate σSC in an quadratic flux line lattice with critical field BC2 [T], applied field Bex and penetration
depth λ. [Bex, BC2, λ]=T,T,µm

8. NGLsigmatri(Bex, BC2, λ) ... Numeric Ginzburg-Landau theory [Bra03] to describe the superconducting
damping rate σSC in an triangular flux line lattice with critical field BC2 [T], applied field Bex and penetration
depth λ. [Bex, BC2, λ]=T,T,µm

9. OrdParaDistr(T, TN , σ, α, β) ... = 1√
2πσ2

∫∞
T
e
− 1

2

(
TN−t
σ

)2 (
1−

(
T
t

)α)β
dt, describes an order parameter

model with Gaussian distributed order temperature TN with standard deviation σ.

6 COMMANDS

• A # ... parameter # is to be overwritten with the automatically determined run specific spectral area

• ConvergenceCriterium # ... sets minimum improvement per step for fitting algorithms. Fitting stops if
improvement is insufficient. (by default set to 0.01)

• CosineSmearing # # # # # ... source radius, sample radius, detector radius, source-sample distance, source-
detector distance; The finite size of source, sample and detector allows photons to pass the sample to the
detector at an angle θ with respect to the axis of source motion. Depending on θ the initial Energy shift v0

is reduced in the following manner: v = v0(1 − cos θ). Riesenmann et al. [RSK69] gave a introduction and
a analytical formula for the case of a dominant sample or detector geometry. Moessfit numerically tests the
occurrence probability density ρ(cos θ) and then smears the raw Mössbauer spectrum according to:

I(vi)dvi =
∑
j

[< ρ >j I(vi)dvi)] dvj with < ρ >j= dv−1
j

∫ cos θ(vj+dvj/2)

cos θ(vj−dvj/2)

ρ(cos θ′)d cos θ′ (8)

• Errors # #... mode, sample count; for mode put one of the following words:

– Uncorrelated: errors indicate the particular parameter change to increase χ2 by 1.

– Hesse: calculates the Hessian matrix and inverts it to gain covariances of every parameter. If the Hessian
matrix is not positive definite, the off diagonal terms are scaled towards zero until positive definiteness
is achieved. This mode is the default setting.
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– Minos: fixes a parameter an fits the model again to find the most distant parameter leading to a χ2

increase of 1. The MaxIter-command should be used to set a sufficiently high iteration count, so that
the χ2-minimum indeed can be reached. Otherwise the displayed errors are underestimated.

– MonteCarlo: samples the parameter space give by the 3σ intervals determined from uncorrelated errors
to map the probability density function. The individual density distributions are fitted by a Gaussian
distribution giving the standard deviation. Type a sample count as second command argument. It is
10000 by default. As the precision of the Monte Carlo error estimation increases with the sample count, it
might be done over night or at any time when computing resources area available. The Monte Carlo error
estimation can be stooped an any time (just limiting the quality of the estimation) giving meaningful
errors in contrast to the other modes.

• ForceSimplex ... forces Moessfit to use the Nelder-Mead-simplex even in global fits instead of a primitive but
faster gradient approach

• I0 # ... parameter # is to be overwritten with the automatically determined run specific baseline

• HR # #... lambda, constraint for Hesse-Rübartsch distributions. To achieve a positive weight constraint the
numeric minimization of χ2 as proposed by Le Cear and Dubois[LCD79] is applied.

• MaxIter # ... maximum Iterations # for one fitting procedure. (by default set to: 1000)

• MEM # # # # #... maximum steps, step size, tolerance, maxlambda’ λ′2 and the baseline I02 concerning
this lambda; by default set to 100, 0.012, 0.1 and 1. The run dependent λ′ is calculated by

λ′ =

√
I02

I0
λ′2

1 +
(√

I02

I0
− 1
)
λ′2

(9)

with regard of the run dependent baseline I0 to achieve run independent smoothness of the MEM-distributions.
λ′2 and I02 respectively should be taken from the run with the highest statistics. That means first MEM-fit
these runs with λ′2 = 1 to gain the maximum λ the algorithm may achieve. Spectra with lower channel content
should achieve an equal smoothness more easily.

• Nucleus # # # # # ... transition energy [keV], gyromagnetic ratio ground state, gyromagnetic ratio excited
state, quadrupole moment [barn], mass [u]; changes the properties of the nucleus, if Moessfit should be applied
to a nucleus with a I = 1/2 ↔ I = 3/2 transition different from 57Fe. For 57Fe you could type ”14.4129
0.09044 -0.1549 0.16 46.993” as argument.

• TransmissionIntegral # # # # ... effective thickness, source line width [mm/s], natural absorber line width
[mm/s], resonant fraction; calculates the full transition integral for the specified theory, useful to fit thick
absorbers. Keep care that the spectrum has exact symmetric velocity spacing (7 velocity digits at least),
otherwise a slow naive convolution will be applied. In this mode you have to set the pure sample line widths
as line width, i.g. subtract the source line width from the total line width. The total spectral area argument
should be set constant, as the actual area is varied by the resonant fraction fr and effective thickness1 ta
only. The meaning of fr is sketched in fig. 4, it typically takes values between 0.2 and 0.6. It is important to
understand that fr and ta are highly correlated, because both determine the total absorption area. However,
the typical thick absorber effects (line width increase, levelling, saturation effect) are exclusively described by
ta. Therefore it is wise to assume fr to be temperature independent and associate any change in absorption
area with ta, which is natural because ta ∝ fa with the temperature dependent absorber Debye Waller factor
fa. The following ways of determining fr may be considered:

1. fit both ta and fr to a spectra with different but known line intensities, typically to the sextet at low
temperatures. Because of the saturation effect the differences in line intensities will be levelled and fr
and ta can be determined simultaneously.

1ta = σ0nafad. The nuclear absorption cross section σ0 = λ2

2π
1+2Ie
1+2Ig

1
1+α

only depends on the properties of the Mössbauer transition

(quantum number Ig and Ie of the ground and excited state, photon wave length λ and conversion factor α). In contrast, the density of
Mössbauer nuclei na, the Debye-Waller factor fa of the absorber and the sample thickness d strongly depend on the sample composition,
quality and preparation.
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Figure 4: Specrum composition for a 25µm iron foil measured with a PIN detector.

2. set fr such that the resulting temperature dependence ta(T ) is a smooth function irrespective of any
splitting. For example if the fr is set too high than ta will relatively low. If the spectral weight is redis-
tributed to multiple lines e.g. at a magnetic phase transition, than the saturation effect is underestimated
and ta will experience a jump, which is not physical.

3. estimate ta from the known Mössbauer nucleus phase density. For 57Fe Mössbauer spectroscopy the

following formula can be applied ta ≈ fa · 0.588 cm2

mg ·
mFe
A with the total2 Fe mass mFe and the face A

covered by the absorber.

4. calibrate the spectrometer with absorbers of known total absorption e−µd (Compton scattering, photo
effect) as described in [Kam16, 55-56]

• UnfoldedData # # #... arguments: velocity, Intensity correction, any constant parameter; recalculates the
velocities and adapts intensities. The user might take this command to handle unfolded data and thus assign
arbitrary channel-velocity relations and float number fold points. The formula for the velocity calculation
should be declared in the FUNCTIONS block. The parameter stated as 3rd argument can be referred in the
velocity function as channel. The same accounts for a intensity correction of the raw data. The correction
e.g. can account for the change of solid angle of source emission due source movement. If no such correction
is desired, type ”1”. Otherwise one may consider the solid angle from a point source (moving function m) to
the detector (distance z, radius r). The intensity correction cI than is:

cI =
I(m)

I(0)
=

2π
∫ θ(m)

0
sinxdx

2π
∫ θ(0)

0
sinxdx

=
1− cos θ(m)

1− cos θ(0)
with cos θ(m) =

z +m√
(z +m)2 + r2

=⇒ cI ≈ 1− r2

(z2 + r2)3/2 − z3 − r2z
m (10)

For sinusoidal source movement m(chn) = vmax/(2πf) · sin(2π(chn+ chnfold)/Nchn) with the drive frequency
f . The following example shows how the unfold data can be treated.

###############################################################

FITPARAMETER

chn 0 0

alpha 0.035 0.001

chnfold 512 0.2

f 25 0

R 5 0

z 100 0

U 209.5 0

Nchn 1024 0

2i.e. NOT only 57Fe, 2.2 % natural abundance of 57Fe is assumed
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...

###############################################################

FUNCTIONS

velocity = vmax*cos((chn+chnfold)/Nchn*2*3.14159)

intensity = 1-(R^{}2)/((z^2+R^2)^(3/2)-z^3-R^2*z)*m

m = vmax / (2*3.15149*f)*sin((chn+chnfold)/Nchn*2*3.14159)

vmax = alpha*U

###############################################################

COMMANDS

UnfoldedData velocity intensity chn

###############################################################

RUN

"unfolded_data.txt" 1

###############################################################

7 PLOT

The PLOT block defines the runs to be plotted and the range. For several runs, the channel contents will be
normalized to baseline. Plotting is called by pressing ”p”. The typical PLOT block looks like the following:

###############################################################

PLOT

runs 4,2 103,5 290,2

range -2.5 3.5 0.85 1.04

###############################################################

8 Fitting anything

For general fitting purpose Mössbauer may serve as proper tool. Data to be fit is a *.fld file with three tab separated
columns: xdata, ydata, yerror. To fit this data you have to type ”fit # #” as the constructor in the THEORY
block. First argument is used as the x buffer, i.e. xdata will be loaded into this parameter and a fit function might
work upon this parameter. This fit function is stated as second argument. The x buffer should be declared as a
constant. The fit function is as usual declared in FUNCTIONS block.

To fit parables with equal curvature a and run specific offset (2.3, 4.7, -4) to three data sets e.g., the concerning
*.mbs file could look like the following:

###############################################################

FITPARAMETER

global_a 0.5 0.1

b 3 0.1

x 0 0

###############################################################

THEORY

fit x fitfunc

###############################################################

FUNCTIONS

fitfunc = global_a*x*x+b*x + rsp

###############################################################

RUN

"C:\path\to\file1\data1.fld" 2.3

"C:\path\to\file2\data2.fld" 4.7

"C:\path\to\file3\data3.fld" -4

###############################################################
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9 How to do a proper calibration

For the velocity calibration a thick iron foil (25µm) is measured in sinusoidal mode of the drive. From the pickup
coil the an effective induction voltage U = 203.18 mV proportional to the maximum velocity vmax of the source is
known. The calibrations aims for the proportional factor α in vmax = αU and eventually the fold channel and the
resonant fraction fr. The following model allows for this task, assuming an hyperfine field of 33 T in iron.

###############################################################

FITPARAMETER

B 33.0 0

CS -0.11 0.02

omega 0.08 0.01

I0 1 1

A0 10000 0

chn 0 0

alpha 0.035 0.001

chnfold 512 0.2

fr 0.5 0.05

T 295 0

Nchn 1024 0

###############################################################

THEORY

BL I0

SHp B 0 0 0 0 CS omega A0

###############################################################

FUNCTIONS

velocity = alpha*rsp*cos((chn+0.5+chnfold)/Nchn*2*3.1415)

ta = 11.57*AbsDeb(T,470,57)

###############################################################

COMMANDS

I0 I0

MaxIter 5000

Errors Hesse

TransmissionIntegral ta 0.0515 0.0485 fr

UnfoldedData velocity 1 chn

###############################################################

RUN

"unfolded_data.txt" 203.18

###############################################################

PLOT

runs 203.18

###############################################################

10 Maximum entropy method (MEM) and other parameter distribu-
tion

The most prominent example of the application of the maximum entropy method (MEM) is the determination of
a magnetic hyperfine field distribution from a broadened spectrum. The initial situation of types of arguments
listed in sec. 3.2 is basically the same: By the argument DISTR[B,Bmin,Bmax,N,rho], MEM[B,Bmin,Bmax,N],
or HR[B,Bmin,Bmax,N] at the argument position of the hyperfine field3 the program calculates N spectra which
differ only by the hyperfine field B. N different but equidistant values for B in the interval [Bmin,Bmax] are
assumed. Usually these N spectra do not contribute equally to the total spectrum but have to be weighted. If the
weight function ρ = ρ(B, ...) is known the DISTR-argument can be applied by defining the function ρ(B, ...) in the
FUNCTIONS block. A prominent example is the spin density wave which is supposed to generate the following
hyperfine field distribution.

3of any constructors listed in sec. 3.1. In most constructors the magnetic hyperfine field is the first argument in the list of arguments
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ρ(B) =
π

2

1√
1− (B/B0)2

∀ 0 ≤ B < B0 (11)

On the other hand, the resulting spectrum may be fitted using maximum entropy or Hesse-Rübartsch method
to extract the distribution ρ(B) without knowing its analytical form. In fig. 5 such reconstruction of a simulated
spectra is shown. The spectra was simulated using the following mbs file, based on eq. 11 with B0 = 20.5 T with
21 subspectra.

###############################################################

FITPARAMETER

B 0 0

###############################################################

THEORY

BL I0

SHc DISTR[B,0,20,21,rho] 0 0 0 0 0 0.12 1000000 0 0

###############################################################

FUNCTIONS

rho = 1/sqrt(1-(B/20.5)^2)

###############################################################

Noise was added to the data using data processing → add noise accessible from the user interface. Subsequently,
this spectrum was fitted using the following model to extract the hyperfine field distribution as shown in fig. 5(a).

###############################################################

FITPARAMETER

B 0 0

###############################################################

THEORY

BL 1000000

SHc MEM[B,0,20,21] 0 0 0 0 0 0.12 100000 0 0

###############################################################

COMMANDS

MEM 500 0.013 0.1 0.388 70000

###############################################################

In fig. 5(b) it is shown that good fitting is achieved with the 21 subspectra. Their weight roughly reproduce the
analytical function (11), with slightly reduced range of values due to the minimization of entropy criterion.
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(a) Hyperfine field distribution as simulated and recon-
structed using MEM. The simulated spectrum was subject to
data processing → add noise accessible from the user interface.
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Figure 5: Simulation and reconstruction of magnetic hyperfine distribution with the hyperfine field longitudinal to
the gamma beam. For the distribution eq. (11) was assumed with B0 = 20.5 T.

Noise was added to the data using data processing → add noise accessible from the user interface. Subsequently,
this spectrum was fitted using the following model to extract the hyperfine field distribution as shown in fig. 5(a).
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###############################################################

FITPARAMETER

B 0 0

###############################################################

THEORY

BL 1000000

SHc MEM[B,0,20,21] 0 0 0 0 0 0.12 100000 0 0

###############################################################

COMMANDS

MEM 500 0.013 0.1 0.388 70000

###############################################################

In sec. 3.2 extended version of argument types are shown: DISTR[x,xmin,xmax,rho,B], MEM[x,xmin,xmax,rho,B],
and HR[x,xmin,xmax,rho,B]. The difference now is, that the control variable x and the parameter value B are not
the same anymore. They not even have to be related! B usually will be a function of x, but it can be a number,
rsp, fit parameter or map – each of them independent of x – as well. In the latter case there is no specific reason to
put the DISTR, MEM, or HR command at the B-position of the spectrum constructor. The only important thing
to remember is: the first argument after ”[” is in any case the parameter, where the value of the control variable is
stored. That’s why it is called ”storage” above. Other parameters may be calculated from the actual value stored
in the control variable.

One possible application of this extended distribution argument type is the simulation of Gaussian distributed
transition temperatures where the saturation field Bs and the critical exponent β are known. It could be modelled
in the following way.

###############################################################

FITPARAMETER

Tn 0 0

sigma 0.5 0.1

Tn0 12 1

beta 0.125 0

Bs 20 0

###############################################################

THEORY

BL 1000000

SHp B 0 DISTR[Tn,Tnmin,Tnmax,61,rho,0] 0 0 0 0.12 100000

###############################################################

FUNCTIONS

Tnmin = Tn0 - 3*sigma

Tnmax = Tn0 + 3*sigma

rho = exp(-0.5*((Tn-Tn0)/sigma)^2)

B = if(rsp<Tn,Bs*(1-rsp/Tn)^beta,0)

###############################################################

In that example the DISTR argument is placed on the argument position of η, and zero value is assigned to η in
any case. I.e., that in this example the position of the DISTR argument is indifferent, as long has the hyperfine
field is calculated from the order parameter function B.

11 Example of a complex mbs-file

###############################################################

FITPARAMETER

B 0 0

B0 0 00

sigma 1.5 0.2

global_Vzz 12 1

theta 58 5

CS 0.5 0.02
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omega 0.14 0.01

I0 1 1

Abs 0.058535 0.002

global_AbsFe0 0.0609 0.0001

global_B0Fe 33.5 0.1

###############################################################

THEORY

BL I0

SHp DISTR[B,Bmin,Bmax,15,rhoB] global_Vzz 0 theta 0 CS omega A0

SHp BFe 0 0 0 0 quadDopllerFe omega AFe

###############################################################

FUNCTIONS

rhoB = exp(-0.5*((B-B0)/sigman)^2)

sigman = max(0.01,abs(map0))

Bmin = B0-3*sigman

Bmax = B0+3*sigman

Bsteps = 15

A0 = I0 * Abs

AFe = I0 * AbsFe

AbsFe = global_AbsFe0*AbsDeb(rsp,453.4442,57.56)

BFe = global_B0Fe*(1-(rsp/1043)^2.0811)^0.3358

quadDopllerFe = 0.109 + QuadDop(rsp,453.4442,57.56)

###############################################################

RUN

4.0 sigma

"../parentfolder/12.0/data.fld" 12.0 sigma

18.0 sigma

"C:/path/to/file/outside/parent/folder/filename.fld" 19.0 sigma

20.0 sigma

22.0 0

"120.0/data.fld" 120.0 0

320.0 0

###############################################################

COMMANDS

I0 I0

###############################################################

11.1 Explanation

The mbs file should be read starting from THEORY. It describes a baseline ”BL” and two powder subspectra in
the full static Hamiltonian model (”SHp”). All three components will be summed up to form the total spectrum.
The first subspectrum represents a doublet that broadens below 22 K whereas the second aubspectrum describes
α-Fe, which was attached to extract experimental line width. This is, why both subspectra share the same line
width omega.

As the hyperfine parameters of α-Fe are well known and it is only intended to provide the experimental line width
omega, the arguments of the subspectrum are strongly restricted. The temperature dependence of the magnetic
hyperfine field BFe is modelled with a two exponent function in the FUNCTIONS block in dependence of the run
specific parameter (”rsp”), which refers to the number stated in the RUN block4, representing temperature in our
case. The only free parameter is the 0-K-hyperfine-field global B0Fe to compensate for calibration inaccuracy of
the Mössbauer drive. In the same way the area AFe and the centre shift quadDopllerFe are modelled with Debye
models as a function of temperature, with fixed Debye temperature and effective mass. Again the 0-K-absorption
global AbsFe and 0-K-centre-shift are the only variables and simultaneously have to account for all runs.

The actual sample is described in the first subspectrum. Only a small broadening was observed below 22 K,
which is attributed to magnetism and thus described by an increasing magnetic hyperfine field. Actually the field

4Usually in the folder, where the mbs file is located, there should exist subfolders to which the run numbers refer. Moessfit will look
into these subfolder to load the newest data file. Alternatively a file path can be given, see sec. 4.
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is described as a Gaussian distribution, because instead a simple argument the ”DISTR” identifier was put to
announce the declaration of a parameter distribution. In the example it describes 15 equally spaced sample values
B between Bmin and Bmax, whose related subspectra are weighted by the rhoB function. The latter is declared
in the FUNCTIONS block as a Gaussian distribution. The normalization of is done automatically, currently the
distribution is centred around B0 =0. The standard deviation sigman could be a simple FITPARAMETER, but
here first it is protected against the zero value and second we used the mapping option (”map0” refers to the
string stated in the RUN block after the run number), i.e. we forced zero for runs with temperatures ≥ 22 K,
below the variable sigma is used. Due to the small broadening the field gradient global Vzz is assumed temperature
independent to not interfere with the magnetic hyperfine field.

12 Programming Moessfit

This section is intended to provide an easy entry point in the Moessfit code, i.e. to sketch the principal program
structure. Please consider also the following thesis [Kam16] and the Moessfit-article [KK16] for an introduction
in Moessfit. Moessfit is a typical QT application, i.e. in main.cpp a MainWindow is generated. The constructor
MainWindow::MainWindow will generate the two plot2D windows MoessSpectrum and EnergySpectrum and even-
tually generate a fitmodel, either using MainWindow::start empty or in case a mbs-file was given in argv[] using
MainWindow::load from mbs. Please note: The current fit model is stored in MainWindow.cfm. This structure can
be relived in fig. 6. In the following section the fitmodel class is explained in detail.

MainWindow
plotVDiMoessSpectrum;ii
plotVDiEnergySpectrum;
fitmodelyicfm;

load_from_mbshQStringLfilenamex;L

plot_current_fit_modellhx;

fitmodel
RUNyirun;
MoessbauerSpectrum*ispectra;
QList<Obj>iobj;
fmPanelyifmpa;
doubleyipData;
doubleyirData;

fitmodelhQStringLfilenamex;

fithx;

errorshx;

calc_run(int i);

build_spectrumhx;

build_iteratorhx;

plothplotVDLyplotterILplotVDLyMEMx;

print_fitdatahx;

get_run_chiVhintLrunix;

get_total_chiVhx;

parse_functionshx;

update_fit_progressbarhx;

plot2D
doubleLyyxpdataILyyypdata;

doubleLLyyxldataILyyyldata;

set_linedatahx;

set_pointdatahx;

fitthread
threattypLfitmodel;

fit_seriellhx;

fit_globalhx;

fit_global_simplexhx;

errors_uncorrelatedhx;

errors_covarianthx;

errors_MINOShx;

errors_MonteCarlohx;

operate_fittinghx;

operate_single_runhx;

operateLfitmodelhx;

GSL

GnuLscientificLlibrary

FunctionParser

©LNieminen©Yliluoma

SIGNAL
ready_to_plot

fmPanel
doubleLyyyrdataI;

MoessCalc
gsl_matrix_complexLyV/;

gsl_matrix_complexLyVY;

get_SC_spectrumhx;

get_Powder_spectrumhx;

GGGG

MEM_Cambridgehx;

TransmissionIntegralhx;

SIGNAL
finished
refresh_progressSIGNAL

recalc

Figure 6: Important relations of Moessfit classes (rectangles), its important attributes (upper rectangle) and func-
tions (lower rectangle), and external dependencies.

12.1 fitmodel class

The instantiation of a fitmodel using the constructor fitmodel::fitmodel(QString filename) has the following goals:

• conistency check of the mbs file (read commands, read fitparameters, read theory, read functions, read run,
read plot)
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• create model specific container (link, process theory), as sketched in fig. 7

• create a model specific user interface (”fit model panel”) fmpanel and connect it to the fitmodel

Only a valid mbs-file allows for any further user input. The principal user inputs are the fitting and the er-
ror calculation, which are both outsourced in the fitthread class. A fitthread recognizes its task (fitting or error
calculation, global or serial) by the constructor fitthread::fitthread it is instantiated with. To perform the required
calculations the fitthread must be provided with a χ2-function, which are the global functions operate fitmodel, op-
erate single run and operate fitting. These global function make the fitmodel recalculating the spectra by eventually
call fitmodel::calc run and inquire the updated χ2 values and provide fitthread with these values. The fitthread itself
directly modifies the parameter container fitmodel.pData, so that χ2 can change at all.

Furthermore fitmodel will plot data with the public function fitmodel::plot. fitmodel::plot should be called by
MainWindow after receiving the fitmodel::ready to plot-signal from fitmodel, and it should not be called by fitmodel
itself. fitmodel is also responsible to update fit- and error-data in the mbs-file using fitmodel::print fitdata.

12.2 fitmodel::calc run function

The fitmodel::calc run organizes the calculation of the spectra and therefore can be considered as the most important
function of the fitmodel class. In general the theory of only a single run is calculated to avoid redundant calculation
whilst fitting. The order of routines executed in calc run is sophisticated and should not be changed cluelessly:

1. if necessary calculate velocity data

2. if necessary change the properties of the nucleus

3. calculate all non-MEM subspectra (actually MEM or Hesse Rübartsch (”HR”))

4. if necessary apply MEM/HR to the rest of the spectrum

5. if necessary apply cosine-smearing

6. if necessary apply the transmission integral

7. calculate the new χ2

An complex application of types of arguments (sec. 3.2) within the argument list of the THEORY con-
structor (sec. 3.1) is enabled by the recursively called fitmodel::build spectrum / build iterator function. fit-
model::build iterator will – as soon as the recursion reached the final step – acquire the specified spectrum. The
calculation of the spectrum is outsourced to the MoessCalc class. The MoessCalc class offers a range of public
functions MoessCalc::get # spectrum(double *I, int cc , double* v, double* p), which take an array of parameters
p, an array of velocities v, the channel count cc and the desired array I for the output of the array. The p is filled
according to the order of arguments as given by the user in the mbs-file and should be interpreted like that in any
MoessCalc::get # spectrum function.

12.3 How to implement a new spectrum constructor

The implementation of a new spectrum constructor for the THEORY block has the goal to enable a correct parsing
in read theory, program the calculation in a MoessCalc::get # spectrum(double *I, int cc , double* v, double* p)
function and to call that function in fitmodel::build spectrum. Therefore consider the following steps to introduce a
new spectrum constructor:

1. write down and test the new MoessCalc::get # spectrum(double *I, int cc , double* v, double* p) function

2. declare a new Mössbauer spectrum type (MSTyp) in fitmodel.h

3. specify the parameter count in the fitmodel::pc(MSTyp m) function

4. introduce the new constructor in fitmodel::read theory, adopt the structure given for other constructors, e.g.
”SHp”, i.e. first check for the desired string, then check the correct number of arguments, and then specify
the MSTyp of the fitmodel.spectra[].

5. call the new MoessCalc-function in fitmodel::build iterator below the comment ”// now the spectrum has to
be calculated”. Specify, which parameter contains the spectral area!
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Figure 7: Parsing and internal mbs representation. The obj-container is fed by FITPARAMETER, FUNCTIONS
and RUN block. The arguments of the spectra in the THEORY block are linked against this obj-container. The
model describes a complex two component fit with global parameters, functions, maps, user defined parameter
distributions (”DISTR”) and Maximum Entropy method.

12.4 mbs Parsing

Moessfit offers more flexibility concerning the usage of parameters, functions and maps then musrfit. For that reason
I like to draw attention on the parsing process of the mbs file, which carries all information. Wherever an argument
is expected in the mbs script, the user may type any string identifier (in fact there are few exceptions). After the
script once was read in and there was no syntax error in the mandatory FITPARAMETER, THEORY and RUN
blocks, the interpretation will proceed by linking the string identifiers against the so called fitmodel::obj -container.
The obj -container was fed before with objects by the reading of the FITPARAMETERS, FUNCTIONS and RUN
block. I.e. the obj -container carries the semantic information of certain string identifiers: either fit parameter,
functions, maps, rsp (run specific parameter, usually temperature or field) or a simple number. The latter are
established, if the string identifier could not be found, but can be interpreted as a number.

After a successful linking the internal representation of the fitmodel, i.e. of the mbs file, is basically complete.
If a spectrum has to be calculated, the argument objects are evaluated using the function fitmodel::eval. In the
internal representation each argument is the index of an object in the obj -container. The evaluation of its value may
depend on the run. Therefore the related run number runi must always be supplied. The use of the intermediate
fitmodel::eval function allows for a nested calling. In doing so, a evaluation covering several levels is possible,
because a map can lead to a function using other functions and so on.

In fig. 7 the parsing and interpretation process is sketched.
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